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Abstract 

SAPE is a Python-based multidisciplinary analysis tool for systems analysis of planetary entry, 
descent, and landing (EDL) for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. The 
purpose of SAPE is to provide a variable-fidelity capability for conceptual and preliminary analysis 
within the same framework. SAPE includes the following analysis modules: geometry, trajectory, 
aerodynamics, aerothermal, thermal protection system, and structural sizing. SAPE uses the Python 
language—a platform-independent open-source software—for integration and for the user interface. The 
development has relied heavily on the object-oriented programming capabilities that are available in 
Python. Modules are provided to interface with commercial and government off-the-shelf software 
components (e.g., thermal protection systems and finite-element analysis). SAPE runs on Microsoft 
Windows and Apple Mac OS X and has been partially tested on Linux. 

Nomenclature 
c = gas mass fraction 
CD = drag coefficient 
CH = heat transfer coefficient 
Cp = pressure coefficient 
D = drag, N 
g = gravity, m/s2 
h = height above planet, m 
H = ellipsled height, m 
K = heating constant 
L = lift, N 
m = mass, kg 
M = molecular mass 
q = stagnation-point heating rate, W/m2 
r = radius, m 
R = body radius, m 
s = distance downrange, m 
t = time, s 
u = velocity, m/s 
V = velocity, m/s 
W = ellipsled width, m 
β = backshell half-cone angle, deg 
θ = forward shell half-cone angle, deg 
γ = flight path angle, deg 
ρ = density, kg/m3 
 
Subscripts 
b = base 
c = convective heating 
e = boundary layer edge 
n = nose 
p = planet 
r = radiative heating 
s = probe shoulder 



I. Introduction 

Systems analysis of a planetary entry, descent, and landing (EDL) is a multidisciplinary activity in nature. 
The purpose of the analysis is to gain a better understanding of various entry system concepts and their 
limitations. Systems analysis teams typically include one or more systems engineers and discipline-
specific experts in flight mechanics, aerodynamics, aerothermodynamics, structural analysis, and thermal 
protection systems (TPS). Other discipline experts, for example, propulsion experts, are consulted as 
needed. The systems analysis process may take from several weeks to several years (references 1 and 2

 

 
provide a good summary of typical systems analysis activities). Integrated tools, like SAPE, improve the 
performance of the systems-analysis team by automating and streamlining the process, and this 
improvement can reduce the errors that stem from manual data transfer among discipline experts. The role 
of discipline experts in the systems-analysis process is indispensable and cannot be replaced by any tool. 

Several efforts have been made to develop integrated tools with a focus on different aspects of planetary 
EDL. For example, the integrated design systems3 (IDS) initiative developed an integrated tool by using a 
common gateway interface (CGI) to integrate codes for various disciplines from a distributed network. 
The IDS program used the Perl script for integration. Allen et al.4 provide more details on the IDS design 
and implementation. The Hyperprobe program5 is another IDS-like Web-based implementation, with the 
addition of a relational database management system. Unlike IDS and Hyperprobe, the Planetary Entry 
Systems Synthesis Tool6 (PESST) is based on Matlab*

 
.  

The key goals for SAPE development are: 
1) Perform EDL systems analysis for any planetary body with an atmosphere. 
2) Operate cross-platform (i.e., Windows, Mac, and Linux operating systems). 
3) Use existing software components. 
4) Use open-source software to avoid software licensing issues. 
5) Perform low-fidelity systems analysis in one hour on a computer that is comparable to an average 

laptop. 
6) Keep discipline experts in the analysis loop. 

The next section discusses the use of the Python language for tool integration. Section III presents the 
design structure matrix for planetary EDL analysis. Section IV reviews the eight planetary bodies with 
atmospheres. Sections V through X introduce the six major modules that are included in SAPE. The last 
section presents recommendations for future enhancements. 
 
The next section discusses the use of the Python language for tool integration. Section III presents the 
design structure matrix for planetary EDL analysis. Section IV reviews the eight planetary bodies with 
atmospheres. Sections V through X introduce the six major modules that are included in SAPE. The last 
section presents recommendations for future enhancements. 
 
II. Use of Python for Integration Environment 

SAPE uses the Python†

* 

 language to develop and integrate various modules. Python is a free, object-oriented, high-
level programming language that is often used as a scripting language. Python is open source and is supported by a 
large community and managed by the Python Software Foundation. Python is available for most computer platforms 
and has a large number of standard libraries, which range from scientific to Web applications. Python users include 

http://www.mathworks.com 
† http://www.python.org 
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Google, Yahoo, YouTube, Disney, the New York Stock Exchange, the European Organization for Nuclear 
Research (CERN), and many other large commercial entities. The United Space Alliance has used Python to 
streamline space shuttle-mission design.*

 
  

III. EDL Design Structure Matrix (DSM) 

The multidisciplinary EDL problem can be decomposed into a set of key disciplines. These discipline 
areas, modules, can be represented in matrix form using the DSM approach. The matrix is a graphical 
approach for representing the interdependencies among these various modules. The DSM is a square 
matrix with the analysis modules positioned along a main diagonal. Table 1 shows a typical DSM 
representation for the integrated EDL analysis. For each analysis module shown on the DSM diagonal, 
relevant outputs are listed in the corresponding row; the inputs are listed in the corresponding column. For 
example, the required inputs for structural analysis are the outer mold line (OML), mass distribution, and 
loads. Structural analysis outputs include an estimate for the structural mass as well as displacements. 
DSM analysis tools, such as DeMAID,7

 

 can be used to analyze the DSM and identify the critical 
dependencies. 

The EDL integrated analysis process is a complex system, and SAPE currently includes only the six most 
important disciplines: geometry, trajectory, aerodynamics, aerothermodynamics, TPS, and structural 
sizing. 
 
IV. Planetary Bodies with Atmosphere 

Eight planetary bodies in our solar system have an appreciable atmosphere; these are Venus, Earth, Mars, 
Jupiter, Saturn, Uranus, Neptune, and Titan. The data that are included in SAPE for all eight planetary 
bodies are based on the NASA Goddard Planetary Fact Sheet† (see table 2). These bodies can be divided 
further into small bodies (Venus, Earth, Mars, and Titan) and large gas giants (Jupiter, Saturn, Uranus, 
and Neptune). Planetary entry characteristics8

 
 for each body are listed in table 3.  

SAPE users can either use the nominal atmospheric profiles9 that are built into SAPE or provide the 
atmospheric profile in a tabular form.  Details on the nominal atmospheric profiles are available for Earth, 
Mars, Neptune, Titan, and Venus in Justus et al.10 and for Jupiter, Neptune, Saturn, and Uranus in Justus 
et al.11

 
 (see figure 1.)  

  

* http://www.python.org/about/success/usa (last visited on February 09, 2009) 
† http://nssdc.gsfc.nasa.gov/planetary/factsheet/index.html (last visited on February 05, 2009) 
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Table 1. Design Structure Matrix for EDL Analysis 
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Earth Mars Titan Venus NeptuneJupiter Saturn Uranus
6378 3397 2575 6052 24764 71492 60268 25559
9.8 3.7 1.35 8.9 11 23.1 9 8.7
1.22 0.02 1.55 65 0.45* 0.16* 0.19* 0.42*

8.5 11.1 10 15.9 20 27 59.5 27.7
120** 120** 800** 130** 630** 395 750 555

28.870 43.501 28.269 43.450 2.373 2.219 2.081 2.271

Table 2. Planetary Body Characteristics
Planets
Radius, km
Gravity, m/s2

Surface atmo. ρ kg/
Atmo. height, km
Atmo. interface, km
Atmo. mole. wt.
* at one bar
** based on refs. 9-11 at 10-9 < ρ < 10-8

 
 
 
 

Composition Entry speeds Heat rates and loads
Small planets: Venus, Earth, 
Mars, Titan

Co2, N2, O2 5–12 km/sec 10's to 100's W/cm2

103–104 J/cm2

Gas giant planets: Jupiter, 
Saturn, Uranus, Neptune

H2, He 25–60 km/sec 1000's W/cm2

105–106 J/cm2

Table 3. Planetary Entry Characteristics

 
 
 
 
 
 

 
 
 

Figure 1. Nominal atmospheric profiles.10-11 
 
 
 

5



V. Geometry Module 

The geometry module is written entirely as an object in Python, and three types of geometries can be 
created: sphere-cone probes, tori, and asymmetric ellipsleds.  
 
SAPE can model most existing sphere-cone probes (See appendix A.) The creation of sphere-cone probe 
geometry uses five flags and a set of geometry parameters. The flags are used to define various probe 
sections: spherical nose (0, 1), conical forward section (0, 1), shoulder fillet (0, 1), aft-body conical 
section (0, n), and back-end section (1). The numbers in parentheses indicate the possible number of 
individual sections. The possible back-end shapes are flat, spherical cap, ellipsoid cap, and fillet. Figure 
2(a) shows a sample sphere-cone model, which consists of a spherical nose, a conical forward section, a 
shoulder fillet, three aft-conical sections, and a flat backend (flags: 1, 1, 1, 3, and flat). Additional 
information and figures on sphere-cone geometry models are given in appendix A. 
 
The ellipsled is an elliptically blunted cylinder that was originally proposed by Muth et al.12 for an Earth-
return aerocapture application. Edquist et al.13

  

 present a modified version of the ellipsled in which the 
nose is defined by two ellipsoids with different minor axes. The modified ellipsled is defined by five 
parameters (figure 2(b)): total length, nose length, width, height, and offset ratio. The geometry module 
can also generate tori, which are donut-like shapes that are defined by major and minor radii (figure 2(c)). 

Figure 2. Available geometry shapes and parameters. 
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VI. Aerodynamics 

SAPE currently includes two aerodynamic models: an analytical expression for aerodynamic drag at a 
zero angle of attack and DACFREE code. The analytical expression for the drag of a sphere cone14

)]sin4cossin21(
2

[sin 4222
max

θθθθ −−+=
b

n
pD R

RCC

  

 (1) 
The DACFREE15 code has been used in many planetary entry studies and uses standard free-molecular 
and modified Newtonian methods. The geometry that is input is a set of triangles with appropriate 
boundary conditions. Python was used to wrap the DACFREE  code and integrate it into SAPE. Figures 3 
shows comparisons of integrated DACFREE results with those of Moss et al.16 (top), Moss et al.17

13
 

(center), and Edquist et al.  (bottom).  
 
VII. Aerothermodynamics 

SAPE currently includes a simple analytical expression for stagnation-point heating. However, the plan is 
to include the Langley Approximate Three-Dimensional Convective Heating (LATCH) code18

 

, which is 
an approximate three-dimensional heating code that is based on the axisymmetric analog for general 
three-dimensional boundary layers. 

SAPE currently uses the analytical expression for stagnation heating rate that was developed by Sutton 
and Graves19

 

: 

nR
VKq ρ3=

  (2) 
where V is the velocity, ρ is the atmospheric density, and Rn is the nose radius. What makes Sutton and 
Graves’s analytical expression unique is that the constant K is derived for a general gas mixture. The 
coefficient K is a function of the atmospheric mass fractions, the molecular weights, and their individual 
transport properties. Sutton and Graves provide two expressions for K: 
 

 

∑∑
=

2

1= ,1106.0

i
K
c

K

M
c

K
i

ii

i

γ
  (3) 

where ci are the mass fractions. The parameters γi that are used in Eq. (3) are the transport parameters of 
the base gas of a mixture and should not be confused with the flight-path angle that is used in the 
trajectory section (other constants are presented in table 4).  
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Figure 3. Comparisons of DACFREE results with those in references 13, 16, 17. 
 

(a) Microprobe (reference 16). 
 

(b) Pathfinder (reference 17). 
 

(c) Ellipsled (reference 13). 
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Tauber and Sutton20

 

 present a simple procedure to approximate the radiative heating for Earth and Mars. 
Both the Sutton/Graves and the Tauber/Sutton procedures provide only approximations and should be 
corrected with available higher fidelity numerical solutions and experimental results. 

The plan is to include TSCAAPE21, which is a script that is tailored to perform aeroheating analysis for  
sphere cones using LAURA22

 

 computer code. The script currently supports Earth, Mars, Titan, Venus, 
Saturn, and Neptune. 

VIII. Trajectory 

SAPE includes a simple trajectory code. Work is underway to include POST-2,23 which is a more 
sophisticated trajectory code. The simple trajectory code is based on equations for planar flight,24

,sin,cos
d
d

,cos)(,sin
2

γγ

γγγ

V
dt
dh

dt
drV

r
R

t
s

r
Vg

m
L

dt
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m
D

dt
dV

p ===

−−=−−=

 as 
shown in figure 4. 

 

(4) 

 

where 
2






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




+
=

rR
R

gg
p

p
s . 

Readers should consult Griffin 
and French24 for additional 
information. The above equation 
set is a system of first-order 
differential equations with its 
initial values—V, h, and γ—
defined at atmospheric entry.  

Figure 4. Planer flight. 

Rp r

γ
h

V

D L

Entr
y i

nte
rfa

ce

Rp r

γ
h

V

D L

Entr
y i

nte
rfa

ce

Mi Ki Earth Mars Titan Venus Neptune Jupiter Saturn Uranus
N2 28.013 0.11 0.785 0.027 0.984 0.035
O2 31.999 0.12 0.215 0.001
H2 2.016 0.04 0.8 0.898 0.967 0.825
He 4.003 0.08 0.19 0.102 0.033 0.152
Ne 20.180 0.15
Ar 39.948 0.15 0.016
CO2 44.010 0.12 0.956 0.016 0.965
NH3 17.031 0.1 0.01 0.023
CH4 16.042 0.08

1.7623 1.8980 1.7407 1.8960 0.6719 0.6556 0.6356 0.6645K*10-4 (eq. 1)

Mass fractionsCoeff. for equation 
Table 4. Constant K
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SAPE uses the Cash and Karp Runge-Kutta method with the adaptive step size25

 

. This particular method 
is fifth-order accurate and more efficient by a factor of two than standard step-doubling methods. The 
method accuracy is controlled by defining a maximum error, and the method adjusts the time step to the 
user-defined level of accuracy. Users also can force a minimum time step to create a larger number of 
data points along the trajectory. A simple, one-dimensional minimization algorithm based on Ridder’s25 
approach is included for the aerocapture applications. The Ridder algorithm is a variation of the false-
position root finding approach with superlinear convergence property. 

The trajectory code implementation is in C++ for efficiency, and the code was verified against several test 
cases. Figure 5 shows a comparison of the results from the simple trajectory code with those of POST-2,23 
and the results are in excellent agreement. 
 
The second set of test cases was based on the aerocapture study of Hall and Lee,26

 

 in which shallow and 
steep entries into four planetary bodies (Mars, Neptune, Titan, and Venus) were analyzed. Table 5 
compares the results from SAPE trajectory with those from Hall and Lee, and the results are in good 
agreement.  

 

Figure 5. Comparison with POST (symbols). 

(a) L/D = 0 

(b) L/D = 0.25) 
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IX. Thermal Protection System (TPS) 

SAPE currently provides an interface to the TPS sizing code FIAT27

 

. The actual FIAT code is not part of 
SAPE and should be obtained directly from NASA Ames Research Center. Necessary inputs to FIAT 
includes the recovery enthalpy Hr, the heat flux term ρeueCH, pressure p, and radiative heat flux qr. 
Trajectory and aerothermal modules generate the free stream density ρ∞, velocity V∞, convective heat flux 
qc, and radiative heat flux qr variables. Figure 6 shows a sample TPS result, which is for a Stardust-class 
vehicle with a ballistic coefficient of 60 kg/m2, an L/D of 0.2, an entry velocity of 12 km/s, and a flight-
path angle of –10o. The heat rate includes a margin of 30%. Figure 6(a) shows the resulting heat rates and 
the total heat load, and figure 6(b) shows the back wall temperature and the recession rate for Phenolic 
Impregnated Carbon Ablator (PICA) concept. FIAT calculated the optimal thickness to be 2.8 cm. 

 
 
 

Figure 6. Heating and TPS sample results for a Stardust-class probe. 

(a) Heat rate and heat load. (b) Wall temperature and recession rate. 

Hall et al. Current % Error
Titan (shallow) 1030.0 1033 0.28
Titan (steep) 1073.0 1077 0.36
Neptune  (shallow) 1257.0 1293 2.83
Neptune  (steep) 1369.0 1369 0.00
Venus  (shallow) 908.0 901 0.77
Venus (steep) 974.0 967 0.73
Mars (shallow) 805.0 804 0.15
Mars  (steep) 868.0 866 0.22

Peak ballute temperature (K)
Table 5. Comparison SAPE Results with Results of Hall and Lee
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X. Finite-Element Analysis and Sizing 

SAPE is capable of analyzing and sizing certain classes of planetary probes. Automating the generation 
and the analysis of the finite-element model (FEM) are quite challenging. These tasks can be simplified 
by restricting the analysis to sphere-cone shapes. The current FEM topology that is used in SAPE is based 
on the existing structural topology, which consists of the shell, the external support structure, and the 
internal payload support. Figure 7 shows various structural topologies for a generic probe. 
 
 

 
After generating the FEM, finite-element analysis (FEA) codes are used to automatically size the vehicle. 
The FEA code provides estimates for the structural mass for given launch and entry loads. Figure 8 shows 
the von Mises stresses on a typical aeroshell structural model. 

  

Figure 7. Sample structural topologies for Pathfinder class probe. 

(c) Warren truss 
on forward shell. 

(a) Bar truss 
on backshell. 

(b) Warren truss 
on backshell. 

Figure 8. Sample FEA result. 
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XI. Summary 

SAPE is a Python-based multidisciplinary analysis tool that has been developed for systems analysis for 
planetary entry, descent, and landing (EDL) for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, 
and Titan. SAPE includes the following analysis modules: geometry, trajectory, aerodynamics, 
aerothermal, thermal protection system, and structural sizing. The geometry module can model most 
existing sphere-cone probes, ellipsleds, and tori. The aerodynamic module includes an analytical 
expression for drag and DACFREE code. The aerothermal module is based on Sutton-Graves 
approximation, and the plan is to include the Langley Approximate Three-Dimensional Convective 
Heating (LATCH) code. SAPE includes a simple trajectory code, which is based on equations for planer 
flight. The work is underway to include POST-2. SAPE currently provides an interface to the TPS sizing 
code FIAT. SAPE is capable of analyzing and sizing certain classes of planetary probes. The current FEM 
topology that is used in SAPE is based on the existing sphere-cone structural topology, which consists of 
the shell, the external support structure, and the internal payload support. SAPE modules have been 
validated against existing tools; however, the integrated system has not been fully validated yet. One 
major short-term goal is to verify the current integrated system. The medium-term goals are to 

1. Integrate an updated version of the FEA script discussed in section X. 
2. Integrate POST-2. 
3. Include sensitivity analysis capability. 
4. Include system-based Monte Carlo simulation capability. 
5. Include LATCH and TSCAAPE codes. 
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Appendix A: Possible Sphere-Cone Shapes 

Figure A1 shows the existing sphere-cone probes that are presented by Davies and Arcadi.28

  

 The numbers 
that are shown below the name of each probe are the SAPE geometry flags, as used in figure 2(a). Table 
A1 shows geometry parameters for shape shown in figure A1. 

Figure A1. Existing sphere-cone probes. 
(s) spherical nose, (c) conical section, and (f) fillet 
 

MIRKA
(s1,c0,f0,c1,flat)

Reentry-F
(s0,c1,f0,c0,flat)

Fire-II
(s1,c0,f0,c4,flat)

BEAGLE
(s1,c1,f1,c1,flat) HAYABUSA

(s1,c1,f0,c3,flat)

Genesis
(s1,c1,f0,c2,flat)

Stardust
(s1,c1,f1,c1,flat)

Microprobe
(s1,c,f1,s)

Pioneer-Venus
(Sounder)

Galileo Probe
(s1,c1,f0,c2,sphere)

OREX
(s1,c1,f0,c2,flat)

Viking
(s1,c1,f1,c2,flat)

PAET
(s1,c1,f0,s)

Apollo
(s1,c0,f1,c1,fillet)

Pioneer-Venus
(s1,c1,f0,c5,sphere)

Huygens
(s1,c1,f0,c3,flat)

MER
(s1,c1,f1,c1,flat)

ARD
(s1,c0,f1,c3,flat)

MIRKA
(s1,c0,f0,c1,flat)

Reentry-F
(s0,c1,f0,c0,flat)

Fire-II
(s1,c0,f0,c4,flat)

BEAGLE
(s1,c1,f1,c1,flat) HAYABUSA

(s1,c1,f0,c3,flat)

Genesis
(s1,c1,f0,c2,flat)

Stardust
(s1,c1,f1,c1,flat)

Microprobe
(s1,c,f1,s)

Pioneer-Venus
(Sounder)

Galileo Probe
(s1,c1,f0,c2,sphere)

OREX
(s1,c1,f0,c2,flat)

Viking
(s1,c1,f1,c2,flat)

PAET
(s1,c1,f0,s)

Apollo
(s1,c0,f1,c1,fillet)

Pioneer-Venus
(s1,c1,f0,c5,sphere)

Huygens
(s1,c1,f0,c3,flat)

MER
(s1,c1,f1,c1,flat)

ARD
(s1,c0,f1,c3,flat)
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r b L/r b r n /r b r s /r b α β Backshell Conic Length Ratios
Backend 
Shapes

ARD 1.4 1.457 2.4 0.1 0  33, 90,0 0.75, -0.31, 0.25  Flat
Apollo 1.955 1.85166 2.4 0.1 0 33 1  Fillet
Beagle 0.45 1.11 0.93 0.0644 70 47, 47 0.5, 0.5  Flat
Fire-II 0.336 1.564 2.78 0 0   90, 0, 90, 33 0.04,.11, -0.04, 0.89  Flat
Galileo_Probe 0.63 1.47 0.35 0 44.86   0, 60, 0 0.07, 0.07, 0.07  Ellipsoid
Genesis 0.75 1.267 0.57 0.044 60 20, 60 0.5, 0.5  Flat
HAYABUSA 0.202 1 1 0 45  45, 90, 45 0.79, -0.06, 0.21  Flat
Huygens 1.35 0.73 0.926 0 60 90 -0.6  Ellipsoid
MER 1.325 1.138 0.5 0.05 70 46.63 1  Flat
Microprobe 0.175 1.561 0.5 0.05 45    Sphere
MIRKA 0.5 2 -1 0 135 0 1  Flat
MSL 2.25 1.116 0.5 0.05 70   36.9, 59 0.5, 0.5  Flat
OREX 1.7 0.888 0.794 0 50 0, 75, 60 0.1, 0.7,0.2  Flat
PAET 0.457 1.4 1 0 55    Ellipsoid
Pathfinder 1.325 1.066 0.5 0.05 70   49, 49 0.5, 0.5  Flat
Reentry-F 0.3965 10 0 0 5.7   Flat
Stardust 0.4135 1.347 0.5625 0.05 60   30, 30 0.5, 0.5  Flat
Venus_Pioneer_Probe 0.38 1.342 0.5 0 45   0, 90 0.3,-0.15  Ellipsoid
Venus_Pioneer_Sounder 0.71 1.465 0.5 0 45   90,0,90,0,60 -0.12,0.37,-0.044,0.08,0.55  Flat
Viking 1.75 0.9381 0.5 0.015 70   39, 62.2 0.5076, 0.4924  Flat

Table A1.  Geometry Parameters for Existing Planetary Probes
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